дробно-квадратичный - Definition. Was ist дробно-квадратичный
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist дробно-квадратичный - definition

Невычет; Квадратичный невычет

Невычет         

степени n по модулю m - число а, для которого Сравнение xna (mod m) не имеет решения; см. Вычет.

Квадратичный вычет         

понятие теории чисел. К. в. по модулю m - число а, для которого Сравнение x2а (mod m) имеет решение: при некотором целом х число x2-a делится на m; если это сравнение не имеет решений, то а называют квадратичным невычетом. Например, если m = 11, то число 3 будет К. в., так как сравнение x2 ≡ 3 (mod 11) имеет решения х = 5, х = 6, а число 2 будет невычетом, т.к. не существует чисел х, удовлетворяющих сравнению x2 ≡ 2 (mod 11). К. в. являются частным случаем Вычетов степени n для n = 2. Если m равно простому нечётному числу р, то среди чисел 1, 2,..., р-1 имеется (р-1)/2 К. в. и (р-1)/2 квадратичных невычетов. Для изучения К. в. по простому модулю р вводится Лежандра символ , определяемый так: если а взаимно просто с р, то полагают = 1, когда а - К. в., и = - 1, когда а - квадратичный невычет. Основной теоремой в этом круге вопросов является так называемый закон взаимности К. в.: если р и q - простые нечётные числа, то

.

Эту закономерность открыл около 1772 Л. Эйлер, современная формулировка дана А. Лежандром, полное доказательство впервые дал в 1801 К. Гаусс. Удобным обобщением символа Лежандра является Якоби символ. Закон взаимности К. в. получил многочисленные обобщения в теории алгебраических чисел. И. М. Виноградовыми др. учёными изучалось распределение К. в. и суммы значений символа Лежандра.

Лит.: Виноградов И. М., Основы теории чисел, 8 изд., М., 1972.

НЕВЫЧЕТ         
в теории чисел , см. Вычет, Степенной вычет.

Wikipedia

Квадратичный вычет

Целое число a {\displaystyle a} называется квадратичным вычетом по модулю m {\displaystyle m} , если разрешимо сравнение:

x 2 a ( mod m ) . {\displaystyle x^{2}\equiv a{\pmod {m}}.}

Если указанное сравнение не разрешимо, то число a {\displaystyle a} называется квадратичным невычетом по модулю m {\displaystyle m} . Решение приведенного выше сравнения означает извлечение квадратного корня в кольце классов вычетов.

Квадратичные вычеты широко применяются в теории чисел, они также нашли практические применения в акустике, криптографии, теории графов (см. Граф Пэли) и в других областях деятельности.

Понятие квадратичного вычета может также рассматриваться для произвольного кольца или поля. Например, квадратичные вычеты в конечных полях.

Was ist Нев<font color="red">ы</font>чет - Definition